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ABSTRACT 

A two-dimensional computer code, using a multi-material Eulerian finite element formulation, was used 
to investigate the dynamic micromechanical behavior of granular material. The main results are : 

The strain-rate insensitive material model provides the correct increase in the dissipated energy with an 
increase of shock pressure ; 

An increase in the initial porosity or the pressure results in the transition from the quasistatic to the 
dynamic regime of particle deformation, which can be characterized by the intensive localized plastic flow 
on the particles’ interfaces. A new space scale is introduced into the system-the width of localized plastic 
flow ; 

The macro and micro-scale responses of the granular material do not depend on the particle size for a 
rate independent material model ; 

The energy of the shock wave compression at high pressures cannot be completely dissipated during the 
pore collapse at the shock front ; 

The transition pressure from the quasistatic to the dynamic deformation regime does not depend on the 
density of the solid material for a given porosity with the other material properties fixed ; 

A well developed dynamic regime correlates with a critical value of the microkinetic energy, which is 
comparable to the geometrically necessary energy for complete pore collapse. 

The results of computer calculations are in qualitative agreement with the experiments. 0 1997 Elsevier 
Science Ltd. 
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1. THE STATE OF THE ART IN THE MICROMECHANICS OF 
GRANULAR MATERIALS UNDER SHOCK LOADING 

Continuum level models, based on the shock Hugoniot curve, are unable to describe 
the highly heterogeneous state of the material behind the shock wave in porous 
materials. Processes on the microstructural level depend not only on such mac- 
roparameters as porosity and pressure, but also on the particle (pore) morphology, 
and the distribution of the plastic deformation and the temperature, which is very 
heterogeneous. Processes on the particle interfaces are responsible for the good bonds 
between the particles, phase transformations, and chemical reactions under intense 
dynamic loading. 
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Fig. 1. “Real” material (a), geometry of Carroll-Holt model (b) and modified model (c). 

Carroll and Holt (1972) used the hollow-sphere model to investigate the behavior 
of porous materials on the microlevel. They obtained a dynamic compaction equation 
with inertial effects. In this approach, the porosity and the average pore size of the 
real material [Fig. I(a)] are described by the porosity and the initial inner radius of 
the model sphere [Fig. 1 (b)]. The resulting differential equations describe the elastic- 
plastic work, the kinetic energy of compacted material and the stationary shock wave 
structure. Butcher et al. (1974) included both viscous dissipation and deviatoric stress 
effects in the same model geometry, and they were able to obtain good agreement 
with the experimental data for shock waves in porous aluminum. 

The principal importance of the strain rate effects (viscous dissipation) for energy 
dissipation in the spherical pore model was emphasized in the analysis of the non- 
equilibrium heating of porous materials by Dunin and Surkov (1982), and Attetkov 
et al. (1984). In these papers, the yield strength and the viscosity were temperature 
independent to permit an analytical treatment, despite the temperature ranging from 
ambient to melting. 

In extending the analyses, Carroll et al. (1986) included linear thermal softening 
for the yield strength. They also postulated an exponential dependence of the viscosity 
on the temperature, based on the experimental values of the viscosity at large defor- 
mations and in the melted state. They obtained a good description of the shock front 
thickness in copper powder, which was demonstrated to be sensitive to the powder 
structure in experiments by Nesterenko (1975). The inclusion of the temperature 
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effects clearly demonstrated that there are two qualitatively different regimes of 
powder densification, resulting in different final structures in the compacted material. 
The increase of the pressure amplitude, or the initial preheating, results in a transition 
to the range “where the inertial effect dominates the compaction process, that tur- 
bulent flow occurs. . . ” as was emphasized by Carroll et al. (1986). A single-pore 
model predicts this change in the compressed material structure, due to the transition 
from low to high pressures (at normal initial temperatures), at I-10 GPa for a copper 
powder with an initial porosity cp = 0.5 (the ratio of the void volume to the total 
volume), which is in agreement with the experiments. 

Nesterenko (1988, 1992) modified the geometry of the single-pore model by intro- 
ducing a non-deformable central core [Fig. 1 (c)l. For granular materials, the particle 
mass was used as a “size” parameter instead of the non-existent pore size. The core 
prevents the spherically symmetric convergence of the outer shell to the center as in 
the hollow sphere model, and separates the dissipation process into two states : during 
pore closure and afterward. It also allowed the introduction of the concept of the 
microkinetic energy, which is the microlevel energy dissipated by the viscopiastic flow 
of the material after the pore collapse, and to divide the shock wave loading into 
quasistatic and dynamic regimes. It is possible to discern one regime from the other 
according to the “deviations of particle contact geometry from straight lines and joint 
points of neighborhood particles, which are point like for a quasistatic regime and 
have peculiarities (melts, jets) for a dynamic regime as a result of the microkinetic 
energy on the last stage of pore collapse,” as emphasized by Nesterenko, et al. (1990, 
1991, 1992). Quasistatic deformation does not result in the bonding between the 
particles even under high pressures, and structurally sound compacts were obtained 
only in the fully developed dynamic regime of the particle deformation. 

The proposed criteria for the transition between the two regimes was based on the 
ratio of the minimum plastic work necessary for the collapse of the spherical pore to 
the total internal shock energy. For some materials, the necessary plastic work can 
be connected with the initial microhardness of particles, which is easily measurable 
in experiments (Nesterenko and Lazaridi, 1990 ; Nesterenko 1995). 

Recently Tong and Ravichandran (1993, 1994) used the classical single hollow- 
sphere model with an elastic/viscoplastic material that included strain-rate sensitivity, 
strain hardening, and thermal softening. They obtained good agreement with the 
available data on the shock front thickness in copper powder as measured by Nes- 
terenko (1975) and with the data of Holman et al. (1994) for 2Al+ Fe,O, powder 
mixtures. 

The micromechanical models based on the single-pore approach play a very impor- 
tant role in the analysis of the dynamic processes, and they provide guidelines in 

understanding the densification kinetics of powders and granular materials. The 
single-pore models are useful when their application results in analytical equations 
and qualitative predictions which may be compared to experiments. Unfortunately, 
the single pore approach has very strong geometrical constraints. It does not take 
into account the real geometry of the particles and the pores, the resulting non- 
uniform plastic flow, the pore collapse in porous mixtures of particles with different 
mechanical properties, and the mutual interactions of the collapsing pores through 
the non-uniform pressure field surrounding the pores. The essential disadvantage of 
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the single-pore models is that, for a strong shock, the actual shock front thickness is 
close to the particle size, which makes very questionable any continuum level approach 
to understanding processes on the shock front. Even “perfectly” cylindrically sym- 
metrical pore collapse is accompanied by shear localization and a subsequent break 
of the cylindrical symmetry during the last stage of pore closure, as was experimentally 
shown by Nesterenko and Bondar (1994) for several materials. Approaches that 
neglect the aforementioned problems, while trying at the same time to saturate the 
single pore model with “exact” material behavior models, heat conductivity effects, 
melting, etc. have rapidly diminishing returns. 

It has been demonstrated that the material structure is responsible for the energy 
distribution between the components in powder mixtures, and that an increase of the 
particle size can result in an increase of the particle contact non-equilibrium tem- 
perature as was demonstrated by Nesterenko (1975, 1992). Kruegen et al. (1992) 
and Tadhani et al. (1994) have shown experimentally that the particle morphology 
determines the thermomechanical response of the components in porous mixtures 
and the possibility of chemical reactions. Therefore, it is very important to develop 
models which take into account the real geometry of the powder and the resulting 
non-uniform plastic flow. 

A qualitatively different approach to this problem, microlevel numerical modeling 
was proposed by Williamson and Berry (1986). This modeling takes into account the 
real geometry of particles and the void space. They considered a two-dimensional 
model of a closest-packed unit cell which was represented by three layers of 304 SS 
cylinders with diameters of 75 pm, placed within rigid boundaries on the bottom and 
sides. The compaction was initiated by the impact of a stainless steel flyer having an 
initial velocity of 1 km s-‘. An elastic/perfectly plastic model without work hardening 
and rate dependence was used to model the powder particles. The conduction heat 
transfer effects were included, along with the solid to liquid melt transition, and 
the dependence of the material strength on temperature. The model predicted the 
localization of the plastic deformation on the particle boundaries, resulting in the 
concentration of heat on the surfaces of the particle and local melting. 

Williamson et al. (1989, 1990) investigated the dynamic compaction of a porous 
mixture of two different materials (Sic fiber-reinforced aluminum matrix composite) 
with a two-dimensional computer model and experiments. Fracture was taken into 
account by using a simple maximum tension criterion and introducing a localized 
crack resulting in the relief of the tension. During the initial stress wave propagation 
through the particles, tensile stresses in excess of the estimated dynamic fracture stress 
of SIC were obtained in the computer calculations, thus predicting the fracture within 
the SIC fibers detected in the experiments. For impact plate velocities greater than 0.5 
km s-l, the melting of the aluminum matrix was predicted in the regions of the 
greatest flow, which is in accord with experimental observation. The pores with the 
greatest volume (without the SIC fibers) are the sites of largest thermal energy depo- 
sition during consolidation. It is worthwhile to mention that the pore collapse in this 
model results from the plastic flow of approximately one-half of the material (from 
the side of the shock propagation) around the pore, which is in disagreement with the 
spherical single-pore model. The authors also mentioned the local high pressure spikes 
at the moment of pore closure, which clearly demonstrates that plastic flow during 
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the pore closure is unable to dissipate all of the shock energy. The remaining energy 
is represented by the microkinetic energy, which is dissipated in the fully compacted 
material. These features cannot be taken into consideration within the limited frame- 
work of the hollow sphere model. 

Williamson (1990) has undertaken an extensive study of the dynamic compaction 
of a granular material (304 SS) with different particle morphologies (monosized, 
bimodal particle distribution, and a matrix of identical hollow cylinders) within the 
framework of a two-dimensional model. The influence of the gas trapped in the 
interstitials in a monosized system was also considered. As in the previous papers 
(Williamson and Berry, 1986 ; Williamson et al., 1989 ; Williamson and Wright, 1990) 
the material strength in the solid phase is approximated by an elastic, perfectly 
plastic constitutive relation without work hardening, but which includes the effects of 
pressure and temperature on the shear modulus and flow stress. An important result 
of this paper is the demonstration (according to determination by Nesterenko, 1992, 
1995), of the transition from quasistatic (projectile impact velocity 0.5 km s-l) to the 
dynamic regime of powder compaction (impact at 1 and 2 km SC’). At impact 
velocities of 1 and 2 km s-l, the heating of the particles near their surfaces is a result 
not only of the plastic flow of the material inside the empty space, but to a comparable 
extent, it is also a result of the local high pressures resulting from the pore collapse. 
It demonstrates the qualitative importance of the collective character of the pore 
dynamics on the heterogeneous heat release. The system with the bimodal particle 
distribution has a decrease in the heating in the vicinity of the large particle surfaces 
in comparison with monosized system (note that porosities of the systems are differ- 
ent), and the relative degree of deformation of small particles is much greater than 
for the large ones, as was detected in experiments by Nesterenko (1985, 1992). The 
analysis of the porous material with the hollow particles demonstrated that the final 
temperature distribution is qualitatively different from the solid particles, resulting in 
a greater energy density at complete consolidation in the case of the solid particles. 
The collapse of the cylindrical holes created hot spots separated at a distance close to 
the radius of the initial hole. A gas trapped in the interstitials greatly increased the 
local temperature on the particle surfaces, but only slightly changed the internal 
energy and the size of the melted zones. 

The results of the papers on microlevel numerical modelling provide important, 
qualitatively new information about the material behaviour during dynamic con- 
solidation, which is in many aspects outside the range of the single-pore models. 
Nevertheless, these results are only for a powder element with a few cylindrical 
particles, and the complicated morphology of real granules can result in qualitative 
differences. The small unit cell in their investigations cannot be used to obtain the 
averaged parameters of the material, e.g. pressure or wave speed, which could be 
compared with values measured in experiments. The geometry of the model does not 
permit comparison with the state behind a stationary shock wave and the question is 
open whether these results are applicable for stationary shocks, or if they are typical 
only for an experimental geometry close to the idealized geometry of the computer 
calculations, which permits only symmetric material flow according to the wave 
propagation direction. 

Benson (1994, 1995) developed a two-dimensional computer code which is able 



1960 D. 1. BENSON et al. 

to address these problems. Benson and Nellis (1994a, b) considered the dynamic 
consolidation of a copper powder, as a model material, in a two-dimensional geometry 
with cylindrical and rectangular particles of different sizes. It was demonstrated that 
the averaged pressures behind the impulse front at the same initial densities did not 
depend on the particle shape, and the computed shock velocity-particle velocity 
relation is close to the corresponding data obtained from available experimental 
results. The plastic deformation is localized on the particle surfaces and the ratio of 
the temperatures between the surface of the particles and their interior was approxi- 
mately five at a piston velocity of 1 km s-l and 3.5 at 2 km SF’ for an initial porosity 
of 9 = 0.19. An interesting peculiarity of the rectangular particles is that the plastic 
flow is much less turbulent (as defined by the deformed particle geometry) than for 
the cylindrical particles at the same initial porosity. It can be connected to the lower 
microkinetic energy in the first case as a result of the more effective dissipation process. 
The faces of the rectangular particles, which are parallel to the piston surface, are 
practically undisturbed by the shock passage. The characteristic heterogeneous tem- 
peratures for these particle geometries are close, and the transition from quasistatic 
to dynamic deformation, accompanied by jet and vortex formation, was observed 
when piston velocity changed from 0.25 to 1 km s-l. 

Benson and Nellis (1994a, b) compared the results of two-dimensional computer 
calculations of a model powder consisting of approximately 100 cylindrical particles 
with diameters ranging from 15 to 20 pm to an experiment with a copper powder 
having the same size distribution with spherical particles at the same initial density of 
6.2 g cm-3. The piston velocity in the calculation was equal to 0.2 km s-‘, cor- 
responding to a shock pressure 2 GPa according to the author’s calculation (Benson 
and Nellis, 1994b). A good agreement was obtained between the quasistatic geometry 
of the particle deformation in the computer calculation and in the physical experiment. 

Meyers et al. (1994) and Shang et al. (1994) analyzed the difference between the 
final particle geometry of Cu and Sic powders with the same particle sizes, initial 
density (80% of the theoretical density) and particle velocity (1 km s-l) using the 
results of two-dimensional computer calculations. It was demonstrated that the defor- 
mation regime for the copper powder was the dynamic one, while it was quasistatic 
for the Sic powder. The difference in behaviour of these two materials is due to the 
fact that the copper powder shock energy exceeds the “geometrically necessary” 
energy for complete consolidation. The remaining “redundant” energy, in the form 
of microkinetic energy, is dissipated into jet and vortex formation. It provides a 
dynamic regime of deformation and good bonding in accord with Nesterenko’s 
approach (Nesterenko and Lazaridi, 1990; Nesterenko, 1992, 1995), which explains 
why the pressures which are necessary for the consolidation of SIC are much greater 
than to consolidate a copper powder. 

Benson et al. (1995) demonstrated experimentally and in two-dimensional computer 
calculations that the particle contact surfaces undergo non-uniform plastic defor- 
mation and subsequent bonding. Benson et al. (1996) also have shown that increasing 
the shock pressure results in a transition from the quasistatic to the dynamic defor- 
mation regimes, that this transition pressure depends on the porosity and does not 
depend on the particle size or the particle material density, and that the well-developed 
dynamic regime correlates with the microkinetic energy. In addition, good agreement 
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for the values of the internal energy and the pressure were obtained between the 
computer calculations and the theoretical values for the stationary shock conditions. 
In accord with the experimental data, the shock front thickness is close to the particle 
size at the high shock pressures. 

In the present paper, the qualitative differences between the quasistatic and dynamic 
regimes of dynamic densification are analyzed with two-dimensional computer cal- 
culations, and with the phenomenologically modified single pore model for different 
conditions of loading and initial properties of powders. Also, the concept of the 
microkinetic energy is analyzed, and the results of the computer calculations of the 
pressure are compared with the values derived from the stationary shock conditions 
and the calculated density, particle velocity for different initial porosities, particle 
size and morphology. The results of the computer calculations are compared with 
experimental results for Fe-based and Ni-based alloys. 

2. PHENOMENOLOGICAL MODELING OF THE QUASISTATIC AND 
DYNAMIC REGIMES OF SHOCK DEFORMATION 

The continuum description of the material behavior is not complete because it 
ignores the processes occurring on the mesolevel, e.g. the particle contact during the 
void closure and the peculiarities of the particle deformations. This approach can not 
be considered as justified for processes with the scales comparable with the particle 
size scale. At the same time, these small-scale processes are extremely important for 
the bonding between particles, the initiation of chemical reactions, and the phase 
transitions. 

The dynamics of the pore collapse in the shock front and the concentration of the 
microkinetic energy on the surface of the particles has a qualitative influence on the 
structure and the properties of the material after the dynamic compaction. The shock 
waves are classified by Nesterenko (1988, 1991, 1992) into the quasistatic regime, in 
which geometry of the viscoplastic deformation of the particles is practically the same 
as obtained in a static press (despite the shock wave loading), and the dynamic regime, 
which has substantial morphological differences in comparison to the static case. 

In the dynamic regime, the particle contacts depart from the planar geometry found 
in statically compressed powders, and the triple contact areas, being point-like for 
the static deformations, have qualitatively different features (localized melting, jets, 
vortices, etc.) that are unique to the dynamic loading. These features are consequences 
of the dissipation of the microkinetic energy during the last stages of the closure of 
the pore. 

The quasistatic deformation does not result in bonding between the particles, 
and structurally sound compacts with high strength were obtained only in the fully 
developed dynamic regime of particle deformation, as was demonstrated by Kasiraj 
ef al. (1984), Wang et al. (1988), Meyers and Wang (1988) and Nesterenko (1992, 
1995). It is therefore important to establish physically-based models of the dynamic 
regime of the particle deformation which result in mutual plastic flow of the particle 
interfaces and the subsequent strong bonding. 

The phenomenological approach to this problem was proposed by Nesterenko 
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(1988, 1992, 1995) on the basis of a comparison of the energy, Ed, which could be 
dissipated during dynamic pore collapse with the geometric conditions typical of 
static deformation, and the internal shock wave energy, E. The corresponding criterion 
for the transition from the static regime to the dynamic can be written as 

where K is a constant. 

Ed/E = K, (1) 

The physical meaning of (1) is that if, at the end of void collapse into the quasistatic 
geometry, the amount of the dissipated energy is small enough in comparison to the 
total energy E, the remaining energy (represented by the microkinetic energy) will 
produce specific changes in the particle geometry and material structure during and 
after the void closure. This provides the conditions for the pressure-shear deformation 
which is favorable for phase transformations, jetting and local melting, chemical 
reactions, and bonding between particles. In the quasi-static case, when the mic- 
rokinetic energy is small during the collapse of the pore, there is no need for the 
material to undergo plastic deformation geometrically different from the static process 
of compaction. 

It is interesting to evaluate Ed with a spherically symmetrical model, e.g. the 
modified Carroll-Holt model, and for the cylindrically symmetrical model (Fig. 1). 
The spherical symmetry ensures the maximum dissipation of energy for a given 
material at a specified porosity under quasistatic conditions as was suggested by 
Nesterenko (1992). If the material properties allow the viscous part of the dissipation 
to be neglected, and the averaged, constant magnitude of yield strength, F, is intro- 
duced, then the equation for E,, in the spherical case for the modified model can be 
written as 

H(x) = xlnx-(x-l)ln(x-l), 

a0 aI 
x0 = __ 

Q-1 ’ a,-1’ 

PS 1 

a=r-9’ 
(4 

where ps and pP are the density of solid material and density of powder, cp is the 
porosity, and ~1~ and CI, are the density ratios for initial and densified states behind the 
shock. It is necessary to use the initial and final coefficients a0 and a, for the traditional 
Carroll-Holt model [Fig. 1 (b)], instead of x0 and x1 for the modified Carroll-Holt 
model [Fig. 1 (c)l. 

First we compare the energy of plastic deformation, Eds, which is necessary to 
completely collapse the pore in the spherical geometry, with Ed0 the same quantity 
for the axisymmetric model of porous material [Fig. l(d)] to be sure that the two 
geometries do not produce qualitatively different results per unit mass. 

The plastic work increment per unit volume is 
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dw = cef deef, 

where oer and E,‘ are effective stress and effective strain : 

o,f=i[(~1-02)2+(o*-63)2+(bj-6,)*]1’2, 
G 
G 

E,f = -+ -Ed2 +(E* --E3)2 + (&3 -&,)2]“2. 

1963 

(3) 

(4) 

For the axisymmetric model geometry, 

& =E 1 ,r 
=ln PO 0 P ’ 

E2 = E,, = -In fi = _-E,, 

0 P 

E3 = E, = 0, 

E.,=$~E;+Ef+.:~2 =$El. 

Using the von Mises criterion, 

(5) 

((TI -02)2+(fJ2 -a#+@,--o,)2 = 2Y2, (6) 

where Y is the yield stress in uniaxial tension, for a cylindrical geometry gef = Y. For 
the rigid-plastic material, the plastic deformation work w, per unit volume at a point 
having a final radius of p is 

(7) 

where R,, is initial pore radius. 
The work of the plastic deformation per unit mass, Edc (R, is the final outer radius) 

is : 

Edc =&jOR’ln(l+$)pdp. (8) 

Introducing the expression for the initial density ratio Q, 

JG 
Lx0 = l+F’ 

I 
(9) 

and using a table of definite integrals (Gradshtein and Ryzhik, 1980), the final 
expression for Edc is 

Edc = __ ’ [a,lna,-(a,-l)lncr,-11. 
J&S 

(10) 

It is important that Edc and Eds depend only on the initial density ratio a, (porosity). 
A comparison of (2) and (10) reveals that the geometrically necessary dissipation 
energies have an identical dependence on the porosity for both geometries, and their 
ratio is 
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Edc a z 0.87 _=- 
Ec,s 2 ' 

(11) 

This difference between the characteristic energies Edc and Eds is too small to quali- 
tatively change the dynamic behavior of powders. 

The expression for the total internal energy per unit mass, E, supplied to the 
material during shock densification, can be easily obtained if the final density is close 
to the theoretical solid density pS : 

E = ;u2 = &(a0 - l), 
\ 

(12) 

where u is particle velocity behind shock front. From (I), (2) and (12), a criterion for 
the transition from the quasistatic to the dynamic regime is 

P>P,= 2~sEci 
K(%rl) 

(13) 

if the potential energy can be ignored, and Ed is the geometrically necessary energy 
for complete pore collapse : PC is the transition pressure. 

Nesterenko and Lazaridi (1990, 1992) proposed to put P equal to its initial value 
Y,,. In this case, all materials can be compared according to their initial yield strength. 
This approximation is reasonable for some rapidly solidified granular materials if 
their microhardness does not change drastically during compaction and the viscous 
dissipation can be neglected. The coefficient K was taken to be 0.5 for the beginning 
of the dynamic deformation regime at a critical pressure PC,. The value of K = 0.25 
was proposed to describe the transition to the developed dynamic deformation regime 
at a critical pressure Pc2, resulting in structurally sound compacts. The calculated 
values based on this approach for the critical pressure PC2 are in good agreement with 
experiments of Kasiraj et al. (1984) and Nesterenko and Lazaridi (1990) for rapidly 
solidified stainless steel granules, where the final tensile strength of compacts was 
measured. 

For the nickel superalloy IN 7 18, the microhardness increased from an initial value 
Hv = 230 to Hv = 500 during the dynamic consolidation as demonstrated by Wang 
et al. (1988) which should result in an increase of Y which is used in the calculation 
of Ed. If we formally take the value F = Y, = 0.714 GPa, then at K = 0.5, the critical 
pressures for the transition to the dynamic regime are 3.2 and 2.1 GPa for the Carroll- 
Holt and the modified models with an initial porosity cp = 0.4. 

Wang et al. (1988) and Meyers and Wang (1988) observed for IN71 8 powders with 
an initial porosity ‘p = 0.4 the beginning of melting in separate spots (that can be 
associated with the beginning of the dynamic regime) at 3 GPa and relatively good 
bonding at 15 GPa. The comparison between these data and the results of the model 
calculations demonstrates reasonable qualitative agreement, taking into account the 
role of hardening. Plastic hardening can increase the values of P,, up to 2.2 times if Y 
can be considered proportional to the microhardness. 

The importance of this approach, which is based on the experimental results for 
one material, and is expected to be true for others, is in clarifying the tendencies which 
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can be expected if the material properties are changed. For example, PC, in (13) does 
not depend on the particle size and the solid density, which is in agreement with the 
independence of the compact strength on the initial particle sizes (Nesterenko, 1992). 
It is necessary to mention that this conclusion is valid only if the viscous dissipation, 
strain hardening, and thermal softening can be ignored. For metals, this approach 
can be used to estimate a lower bound on the transition pressure. The critical pressure 
is dependent on the particle size and ps if the viscous effects dominate the dissipation 
stage of the quasistatic deformation, which can be expected for polymers and low 
strength metals. 

Evidently, this model suffers from many uncertainties, such as the validity of using 
the value of K obtained for one material for another, and the impossibility of including 
the dependence of Y on the temperature, strain and strain rate effects, etc. Also, 
despite the determination that the quasistatic and dynamic regimes are of a qualitative 
nature, and that the boundary between them is determined apriori, the vastly different 
behaviour of the granular material in these two regimes, resulting in different proper- 
ties of the compacts, justifies their separation. The situation resembles the transition 
from laminar to turbulent flow. It is important to establish the dependence of the 
transition pressure on the material properties and the morphology of powder particles, 
or at least to clarify the main tendencies. 

Computer modelling can be a powerful instrument to determine the qualitative 
regimes of powder deformation as a function of their mechanical properties and 
particle morphology. 

3. TWO-DIMENSIONAL COMPUTER MODELLING OF THE SHOCK 
CONSOLIDATION PROCESS 

3.1. Geometry of the model 

Since the powder particles have an initially random packing, a representative 
element of volume must have a moderate to large number of particles to represent 
the powder. A Monte Carlo technique, which used an experimentally measured 
particle size distribution, was combined with a pseudo-gravity particle packing 
method to generate an initial particle distribution with over 100 particles. 

The different initial geometries of packing of the cylindrically symmetrical particles 
with various sizes and porosities are shown in Fig. 2. The pseudo-gravity method 
for cylindrically symmetric particles typically packs the particles to a density of 
approximately 80% of the solid density [Fig. 2(a,c)]. Most real powders have a density 
closer to 50% of the solid density. One means of obtaining a lower density from the 
initial pseudo-gravity packing is to delete individual particles randomly until the 
correct density is obtained. Calculations performed using this approach show a large 
amount of jetting, even at low shock pressures, that is not found in the experiments. 
The reason is that this approach produces the holes with the sizes which are absent 
in real 3-D granular material, where “pores” are distributed more or less uniformly 
around a particle surface. 

A more successful approach to reducing the density of the initial pseudo-gravity 
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Transmitting Boundary Condition 

a 

b C 

Fig. 2. Initial geometry of cylindrical particles in 2-D computer calculations : a-particles with porosity 
0.19, large spread in sizes (0.5-10 pm), b-particles with porosity 0.4, small spread in sizes (31WO pm), 
c-particles with porosity 0.19, small spread in sizes (74-88 pm). The arrow shows direction of shock wave 

propagation. 

packing is motivated by examining a two-dimensional slice through a three-dimen- 
sional packing of particles. Naturally, the particles being in contact in three dimensions 
are not necessarily in contact in the two-dimensional slice [Fig. 2(b)]. The apparent 
two-dimensional size distribution is altered because the slice does not cut through the 
center of all the particles in a 3-D packing geometry. 

In the present calculations, the particle size distribution is scaled by a constant 
factor, S. The particles are packed using the pseudo-gravity method, and the diameters 
of the packed particles are resealed by l/S while keeping their locations fixed. The 
factor is chosen so that the final density after the resealing is correct. 
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A Monte-Carlo sampling could alter the size distribution of the cylindrical particles 
in the two-dimensional model to reflect the apparent size distribution of the slice 
through the three-dimensional packing. It is not clear that the altered size distribution 
would produce a better solution. The mean diameter of a particle that the shock wave 
“sees” as it propagates through the powder is equal to the volume of the particle 
divided by the diameter of the particle (the thickness of the particle parallel to the 
shock front), which is approximately 0.82 of the original diameter in the cylindrical 
geometry. Until sensitive statistical methods for characterizing the morphology of the 
shocked powders is developed, it is unlikely that the 0.18 constant size difference 
will be discernible. The original size distribution is therefore used in the present 
calculations. 

A velocity boundary condition imposes the particle velocity u behind the shock in 
the powder. To minimize the numerical noise within the wave front, the velocity of 
the piston generating the shock is ramped with the quadratic function 

u(t) = umin(l,(0,,,,#), (14) 

where u is the steady state particle velocity and tblend is equal to the first output step 
time. 

The left and right boundaries are symmetry planes, with normal and tangential 
unit vectors n and t respectively, which impose 

u*n=O, 

o-t = 0, (15) 

on the particle velocity u and Cauchy stress cr. A transmitting boundary condition, 
developed by McGlaun (1982), permits the wave to pass through the powder without 
reflection. 

3.2. Material modelling 

The numerical solutions for the model problem were obtained with a multi-material 
Eulerian finite element program (Benson, 1995). The Eulerian mesh is fixed in space 
and the material is transported through it. A high resolution interface reconstruction 
method developed by Youngs (1982) and extended by Johnson (1990) resolves the 
material boundaries within each element. The transport between the adjacent elements 
is computed with the second order accurate monotonic MUSCL method developed 
by van Leer (1977). A computational mesh of 100 elements on each side, for a total 
of 10,000 elements in two dimensions, is used in the calculations. Test calculations 
with 200 elements on each side have demonstrated that higher mesh resolution is not 
needed for the present purposes. 

The strength of the particles is modelled even though their behaviour is dominated 
by the equation of state except at the very lowest shock pressures. The plasticity 
model of Steinberg and Guinan (1978, 1996) and Steinberg et al. (1980), and the 
Gruneisen equation of state, are used to describe the material behaviour. The differ- 
ential equations for the Steinberg-Guinan plasticity model follow the well established 
framework of .J2 flow theory with isotropic hardening defined by 
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6’ = 2G(B’-BP), (16) 

’ 2 

- s\i- sp = _ 8P . EP & 

“3’ ’ (17) 

J 3 
Lry = --‘: c’, 

2 (18) 

where (T’ is the deviatoric part of the Cauchy stress tensor, E’ is the deviatoric strain 
rate tensor, sp is the plastic strain rate, and 2 is the equivalent plastic strain. These 
equations are integrated numerically using the radial return method, e.g. Krieg and 
Key (1976). 

Both the shear modulus, G, and the yield strength, dy, are temperature and pressure 
dependent and have the same general functional form (Steinberg et al., 1980). The 
strain-rate dependence is not taken into account in these calculations, which can be 
reasonable in the case of high-strength materials, (for example, rapidly solidified 
granules and ceramics) and where large strains are involved as is the case with powder 
densification. The temperature dependence is expressed in the constitutive model in 
terms of the internal energy E per initial volume VO. When the internal energy is below 
the “melt” energy, Em, the shear modulus is 

G(P,T) = G,{l+AP/y”‘-_(T-T,,,)}exp(-fE/(E,-E)), (19) 

where G,,, A, B, andf’are material constants, T,, is the initial temperature, and n is 
the compression VO/ V. The yield strength has the same functional form : 

Y = Y&&J{ 1 fA’P/r]“3 - NT- T,,r)) exp(-,fE/(E,-E)), 

with the work hardening law 

(20) 

Y&&p) = Y”[l +&+P)]” 6 Y,,,. 

If E > E,,,, then we set G and Y equal to zero. 

(21) 

The “melting” energy, E,,,, the energy necessary to increase the temperature to the 
melting point, is defined as 

Em = E,+q,T,. (22) 

This definition of melting energy does not include the latent heat of melting, SO it 
does not account for the actual amount of the melted material or the correct tem- 
perature when it is higher than melting temperature. But in our calculations, we are 
primarily interested in the internal energy dissipated during the plastic deformation, 
and suppose that the achievement of the melting temperature will result in material 
properties of the liquid phase even without an additional supply of latent heat. This 
is a reasonable approximation because the change of mechanical properties during 
transition from solid at the melting temperature to the liquid at the same temperature 
is negligible. In accord with this consideration, (19) and (20) ensure the gradual 
approach to zero of Y and G as the internal energy E approaches Em. Beyond the 
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melting temperature, the internal energy is correct but the calculated temperature is 
inaccurate. 

The melting temperature, T,,,, based on a modified Lindemann law, according to 
Steinberg et al. (1980) is approximated as 

T,,, = T,,,,,exp {2a(l- 1/~)}r$(10--O~‘*3), (23) 

where T,,,, is the melting temperature at ambient pressure and a is the first order 
volume correction factor for the Gruneisen parameter y : 

Y=Yo+a t-1 =yo+ay. ( ) v- v. 
0 

(24) 

The temperature T is defined by 

E-E, 
T=-----, 

CP 
(25) 

where EC is the cold compression energy. The constant specific heat cP is assumed to 
be 

RPO 
cp = 3---, 

A4 (26) 

where R is the gas constant, M is the atomic mass, and p. is reference (initial) density. 
For the calculation of E, we used 

(27) 

where the first terms is the integral on the zero Kelvin isotherm. The energy is supposed 
to be zero at T = 300K in an uncompressed material (q = 1) where EC = -300~~. 

The Gruneisen equation of state used in the calculations in compression 
(p = q - 1 > 0) is 

P= 
PoC~~~2+(2-~o)~-~~o--a)~21 

211 -G, - 1)P--2PZ/(P+ l)-Q31(cL+ 11212 
+ bo + (YO -4/W> (28) 

and in tension (11 < 0), the pressure is 

P = ~oCb+yoE, (29) 

where Co is the sound speed and S,, S,, and S3 are the coefficients in the shock velocity 
(u,)-particle velocity (u,) relation : 

24, = co+s~u,+s* (3u,+s3 (3%. (30) 

For metals, the linear approximation is very accurate in the pressure ranges considered 
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Table 1. Materials parameters 

Ni-based alloy 1 Stainless steel 

G, (Mbar) 
I’, (Mbar) 

B 
n 

Y,,, (Mbar) 
A (Mbar-‘) 
A’ (Mbar-‘) 

?I (K-1) 
f 
M 

TmoW 
YO 
a 
PO 62 cm-3 
C, (cm ps-‘) 
cp (Mbar cm3g K -‘) 

S, 

0.85 0.77 
0.007136 0.0205 
2.75 43 
0.475 0.35 
0.012 0.024 
1.63 2.6 
1 2.6 
1 1 
0.000326 0.00045 
0.001 0.001 

58.7 55.35 
2330 2380 

1.93 1.93 
1.4 1.4 
8.26 7.77 
0.465 0.457 
0.000040 1 0.0000423 
1.445 1.49 

in the present investigation. The parameters which were used in calculations for 
comparison with the physical experiments are presented in Table 1. 

Details concerning the computational model can be found in Benson (1992). Data 
for stainless steel were taken mostly from data for SS304 (Steinberg et al., 1980; 
Steinberg, 1996). The most important stainless steel parameters for this type of 
calculation were obtained from experimental measurements of initial microhardness 
(to calculate Y,) and the maximal microhardness (to calculate Y,,,,,) of the heavily 
deformed peripheral layers of the particles of alloy EP-450 after densification without 
melting (Nesterenko et al., 1989) with Y = HV/3. Data for the Ni-based alloy 1 are 
also taken from Steinberg (1996) data for Ni, except for the values for p, n, p,, and Y,, 
which were taken from the properties of Ni-based alloy IN7 18 investigated by Wang 
et al. (1988). 

Two-dimensional computer calculations were carried out for Ni-based alloy 1 at 
qDo = 0.4 and q0 = 0.19 for three different particle velocities behind the shock front : 
0.22,0.75 and 1.1 km SK’. This set of particle velocities guaranteed the transition from 
the quasistatic to the well developed dynamic regime of particle deformation for the 
Ni alloys according to the phenomenological criterion (4). The particle sizes were 
chosen to have uniform distributions in the intervals 0.74-0.88, 2.22-2.64 and 74-88 

pm. 
The shock densification of the stainless steel powders was investigated at ‘pO = 0.39 

for two particle velocities behind the shock front : 0.7 and 1.29 km SK’, and for particle 
sizes 31M40 ,um. 

Additional computer calculations were made for artificial materials with one of the 
parameters different from the set presented in Table 1: 
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1. Y,, was decreased by one order of magnitude from 0.0205 to 0.00205 Mbar for 
stainless steel ; 

2. Y, was set to 0 retaining the other parameters for the IN-718 (fluid-model) ; 
3. The Ni-based alloy 2 with density 8.9 g cme3 and with the other parameters 

for the Ni-based alloy 1 ; 
4. The density was increased to 19.35 g cmp3 with the other parameters for the 

Ni-based alloy 1. 

It is important to mention (it will be discussed in detail later) that no qualitative 
dependence of the powder behaviour on the initial particle size was observed for a 
fixed particle velocity. 

3.3. Results of the computer calculations 

To evaluate the results of the computer calculations, mean values of parameters 
were defined by 

d(y) = ; 
s 
h(x, y) dx, 

’ 0 
(31) 

where 0(x, y) is a solution variable, x is parallel to the shock front, and y is the 
distance from the wall with the velocity boundary condition. These data are presented 
in Figs 3-7, 9-12, 14 and 15 which are plotted as a function of y. The following were 
calculated in every element : 
Total kinetic energy : 

E Tkm (32) 

Internal energy : 

(33) 

Pressure and density : 

NMAT NMAT 

P = 1 P,(P,, EJ vf, P = 1 pivf. 
I= I i= 1 

(34) 

Here NMAT is the number of materials in the element at the current time, p, is the 
current density of material i, Vf is the volume fraction of material i in the element 
and Vy is the current volume of material i : 

(35) 

Note that V: is not the specific volume of the material i. 
Additionally two mesoscopic parameters were calculated : 
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E - &km mkm - -EMkin EMkin = k,dfi, ti(y) = f 
s 
‘u~(x,Y) dy, (36) 
0 

where E~kin is the macrokinetic energy. Note that the definition of the microkinetic 
energy uses the mean value of the velocity ti in its definition. Spin : 

_q!!p). (37) 

Note that these parameters are not measurable in the experiments but they are very 
important to the overall material behaviour, e.g. bonding between particles or the 
initiation of chemical reactions. 

3.3.1. Comparison of the relationsfor a stationary shock and the results of numerical 

calculations of pressure and internal energy. The traditional approach for the cal- 
culation of the material parameters behind shock waves is based on the stationary 
condition for the shock front. The compression impulse [Figs 3(a, b)] in the computer 
calculations, as described by the total kinetic energy and the internal energy profiles, 
has the typical features of a shock profile. But with the relatively small number of 
particles (in comparison with the experiments), the interaction of the shock front with 
the boundary which separates the rigid piston and the compacted powder can result 
in significant differences in comparison to stationary shocks. Therefore, it is desirable 
to compare averaged values of the maximum pressures in the computer calculations, 
P,,,, with the calculation values of the pressures P,, based on data for the particle 
velocity, the final density from the computer model, and the conservation laws for 
mass and momentum in a stationary shock (Benson et al., 1996), 

SHOCK STATIONARITY, U = 0.22 KM/S, P,, = 0.6 GPa 

0.000 o.ooo+ad~, I I , 1 

0. 00 2.10-4 4m-4 cm 0. 00 4 10-q 

a b 
Fig. 3. Stationarity of the shock in computer calculations, Ni alloy I. Dependence of the shocks profile 
(I-total kinetic energy, 2-internal energy) on different distances from shock entry : a-profiles for “short” 
system ; &profiles for “long” system. Porosity 0.4, solid density 8.26 g cm-‘, piston velocity u = 0.22 km 

s-‘, particle size 0.74-0.88 pm. 
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Tables 2-9 present the values of the pressures obtained in computer calculations, 
PC,,, and the values of the pressures for the stationary shock, P,,. 

Table 2. Smallparticles with diameters d = 0.740.88 pm, 

porosity 0.4, Ni-alloy 1 

u (km SC’) pf (g cm-‘) PC,, (GPa) P,, (GPa) 

0.22 8.3 0.9 0.6 
0.22 (long) 8.3 0.6 0.6 

0.75 8.3 4.5 6.9 
1.1 8.9 12.2 13.5 

Table 3. Largeparticles with diameters d = 2.22-2.64 pm, 

porosity 0.40, Ni-alloy 1 

u (km SK’) 

0.22 
0.75 
1.1 

h (g cm-‘) 

8.3 
8.3 
8.6 

PC,, @Pa) 

0.45 
5.8 

13.85 

P,, (GPa) 

0.6 
6.9 

14.1 

Table 4. Large stainless steel particles with the diameters 

310-440 ,um, porosity 0.4, and different strength Y, 

YO 
(Mbar) (kmUs-I) (g c%‘) ($a) (&L) 

2.05 x 1O-2 0.7 7.8 5.1 5.2 
2.05 x 1O-2 1.29 8.2 17.9 16.1 
2.05 x 1O-3 0.7 7.8 5.7 4.9 
2.05 x 1O-3 1.29 8.3 17.7 15.5 

Table 5. Smallparticles with the diameters d = 0.74-0.88 

pm, porosity 0.19, Ni-based alloy 2 

u (km SK’) pf (g cm-‘) PC,, (GW P,, (GW 

0.25 8.9 1.95 2.4 
0.48 9.1 7.1 7.95 
0.67 9.4 13.7 13.9 
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Table 6. Particles with the large spread of diameters 0.5 
1 .O pm, porosity 0.19, Ni-based alloy 2 

u (km SC’) 

0.48 
0.67 

pf (g cm-‘) 

9.15 
9.35 

PC,, (@a) 

7.85 
13.9 

P,, (GW 

7.9 
14.7 

Table I. Small particles with the diameters d = 0.74-0.88 
,um, porosity 0.18, Ni-alloy 1 

u (km SC’) pf (g cm-‘) PC,, (GPa) f’,, (GW 

0.48 8.46 6.5 7.8 
0.67 8.65 11.8 14 

Table 8. Shock parameters ,for heavy particles, solid den- 
sity 19.35 .9 crne3 initial porosity 0.4, particle diameters 

0.74088 pm 

u (km SC’) 

0.14 
0.49 
0.72 

pf (g cm-‘) 

19.36 
19.5 
19.5 

PC,, (@a) 

0.53 
8 

11.1 

p,, @Pa) 

0.57 
6.9 

14.9 

Table 9. Shock parameters ,for jluid model, solid density 
8.26 g cm-‘, initial porosity 0.4, particle diameters 

d = 2.22-2.64 pm 

u (km SC’) pr (g cm-‘) f’,,, @Pa) f’,, @Pa) 

0.22 8.19 0.39 0.6 

For the pressure, the average values can be significantly different from the maximum 
and minimum values [Fig. 4(b, d)]. In this case, PC,, was defined as (Pm,,+ P,,,)/2, 
where the corresponding maximum and minimum pressures [shown by arrows in Fig. 
4(b, d)] were taken at the moment after the porosity became zero. 

From a comparison of Pea, and P,, in Tables 2-9, we conclude that there is qualitative 
correlation between them and a satisfactory quantitative agreement for the inves- 
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u = 0.75 KM/s, P‘T = 6.9 GPa, INI’M& POROSITY 0.40 

0.04- 

0.02- 

,.,,.*,,k 

1.0 I I 4 I I I I I I I 
0. 00 2.10-4 5W’ cm 0. 00 2.w’ S.lV4 cm 

1975 

a b 

0 = 0.40 KM/S, PJ, = 8.0 Gpn, INITLAL POROSITY 0.19 

0. 00 2 .lo-4 5-10m4 cm 

C 

Mbnr 
Pq 

%f a 
bP,* 

&g 

0 
; 6.d.n 

0.04 - 
_: 

0.02 - d 

d’ 
0.00 -wewed 

I 1 I I , , 
0. 00 2 *10-d 5.w” cm 

d 
Fig. 4. The characteristic profiles of pressures and densities behind shock front for different conditions 
demonstrating the amount of data spread : adensity profile, b-pressure profile (Pst = 6.9 GPa, initial 
porosity 0.40, piston velocity 0.75 km SK’) ; cdensity profile, d-pressure profile (P,, = 8 GPa, initial 
porosity 0.19, piston velocity 0.48 km SC’). Arrows show the maximal (P,,,) and minimal (P,,,J pressures 
used to calculate the P,,. Solid density 8.26 g cm-j, Ni alloy 1 (a, b) and 8.9 g cm-‘, Ni alloy 2 (c, d), 

particle size 0.740.88 pm. 

tigated pressure range. The relatively large pressure spread characteristic of the com- 
puter results reflects the actual large spread of local pressures in the shock front and 
in the vicinity behind, which was found in the experimental results (Nesterenko, 
1992). In the investigated conditions, the pressure spread from the calculated average 
values was in the interval of 7-34%, except in the case of large particles, where at 
particle velocity 0.75 km s-l, this value was 52%. In contrast to the pressure, the 
spread in the densities and the average particle velocities, in the direction of shock 
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propagation, was much less (5510%). This is due to the strong non-linear dependence 
of the cold (and overall) pressures on the density, which magnifies the oscillations of 
the density behind the shock wave. In the cases of the total kinetic energy, internal 
energy, and particle velocity of the porous material, the computer calculations provide 
a relatively small data spread (5510%) in Figs 3(a, b) and 4(a, c). 

Another important feature of the stationary shock conditions is that the internal 
energy per unit mass must be equal to the corresponding macrokinetic energy 

Emkin = l&n- EMkln. Total kinetic energy, internal energy and microkinetic energy 
were calculated from (32), (33) and (36) and the typical behaviour is represented on 
the Fig. 3(a, b). 

A comparison of “short” and “long” systems, consisting of 5 and 11 particles in 
the shock direction, respectively (Fig. 3) shows that the density, particle velocity, and 
total and microkinetic and, correspondingly, the macrokinetic energy, are close for 
these two cases. This behaviour shows that the shock wave is close to a stationary 
one after covering the distance of a few particle diameters. Nevertheless, we notice 
the elevated values of the dissipated energy at the piston boundary, a result of the 
non-stationary wave propagation (Nesterenko, 1992). 

From Tables 2 to 9 we can conclude that the numerical values of the pressures 
do not reveal a significant dependence on the particle size, which agrees with the 
independence of the experimentally measured shock Hugoniots of granular materials 
on the initial particle size. 

The main conclusion of the discussion in this section is that the two-dimensional 
computer calculations produce averaged data for shocked powders that are in close 
agreement with the stationary shock conditions for a large variety of materials, 
particle geometries, porosities, and pressures. This result allows us to interpret the 
data from the computer calculations as representative for stationary shock loading 
and not just as representative for the loading of a finite cell of powder with a few 
particles inside. 

3.3.2. Microkinetic energy and pressure induced transition from quasistatic to 
dynamic regime ofparticle deformation. Nesterenko (1988, 1992) introduced the term 
“microkinetic energy” to describe the qualitative transition from the quasistatic type 
of particle deformation to the dynamic under the shock wave loading of powders. 
One of the most interesting qualitative results of the two-dimensional computer 
calculations is the possibility of explaining the transition from the quasistatic to 
the dynamic particle deformation. The energy explanation for this transition is the 
adjustment of the geometry of the plastic flow of the particles to balance the amount 
of the energy supplied by the shock loading. The manifestation of this transition can 
be followed by introducing a new parameter, the microkinetic energy. 

This parameter (Emkin) was calculated by (36) and the maximum values of Emk,,, 
and internal energy Ei, at the moment of complete pore collapse for different 
conditions, are shown in Tables l&17. The data for the energies were converted into 
kJ kg-’ by dividing the computed results by the density of completely consolidated 
material. For practically all investigated conditions of loading and porosity, the 
internal energy was close to the dissipated energy. 

The increase of the shock pressure results in the qualitative change of the particle 
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Table 10. Porosity 0.40, small particles with diameters d = 0.74-0.88 pm, Ni-alloy 

p,, @Pa) u (km SC’) Emkin (kJ kg-‘) Lx (kJ kg-‘) Type of regime 

0.6 0.22 6.0 19.3 
0.6 0.22 (long) 4.8 21.1 
6.9 0.75 66.3 217 

13.5 1.1 157.3 449 

quasistatic 
quasistatic 
dynamic 
dynamic 

Table 11. Porosity 0.4, large particles with diameters d = 2.22-2.64 pm, Ni-alloy 1 
(compare with data of Table 10) 

p,, WY u (km SC’) ~%kln (kJ kg-‘) Cm @J kg-‘) Type of regime 

0.6 0.22 3.6 19.3 quasistatic 
6.9 0.75 48.2 150.6 dynamic 
14.1 1.1 93.0 464.9 dynamic 

Table 12. Porosity 0.19, smallparticles with the diameters d = 0.740.88 pm, Ni-based 
alloy 2 (compare with data of Table 13) 

u (km SC’) Glnn (kJ kg- ‘> Em, @J kg- ‘> Type of regime 

2.4 0.25 2.1 21.4 quasistatic 
7.95 0.48 19.6 55.8 quasistatic, dynamic locally 
13.9 0.67 50.7 114.0 dynamic 

Table 13. Porosity 0.19, mixture of large andsmallparticles, d = 0.5-1.0 pm, Ni-based 
alloy 2 

f’,, @Pa) 

7.9 
14.7 

u (km SC’) 

0.48 
0.67 

EmkIn (kJ kg-‘) &t &J kg-‘) Type of regime 

22.2 68.0 quasistatic, dynamic locally 
45.0 87.0 dynamic 

Table 14. Large stainless steel particles with the diameters 3 lo-440 pm, porosity 0.4, 
and different initial strength Y, 

yo u 

(Mbar) ($a) (km SK’) -Lx,, @J k-9 4”’ @J kg-‘) Type of regime 

2.05 x lo-* 5.7 0.7 48.4 184.3 quasistatic 
2.05 x lo-* 17.9 1.29 164.5 598 dynamic 
2.05 x lO-3 5.7 0.7 78.7 189.3 dynamic 
2.05 x 1O-3 17.7 1.29 221.9 486 dynamic 
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Table 15. Fluid model, solid density 8.26 g cm-3, initial porosity 0.4, particle diameters 
d = 2.22-2.64 mm 

u (km s-‘) p,, @Pa) 

0.22 0.6 

EmkIn @J/W’) 

4.3 

&, &J/k- ‘) 

15.0 

Type of regime 

dynamic 

Table 16. Small particles with the diameters d = 0.74-0.88 ,am, porosity 0.18, Ni-alloy 

1 (compare with Table 10) 

P,, (GPa) u (km SK’) Emkln (kJ kg-‘) E,, (kJ kg-‘) Type of regime 

7.8 0.48 18.4 54.7 quasistatic, dynamic locally 
14 0.67 32.1 172.0 dynamic 

Table 17. Heaoy particles, solid density 19.35 g cm-‘, initial porosity 0.4, particle 

diameters 0.740.88 pm 

p,, 0’4 

0.57 
6.9 

14.9 

u (km s-‘) 

0.14 
0.49 
0.72 

&k,n (kJ kg-‘) 

2.8 
32.9 
77.4 

Em, (kJ kc’) 

7.8 
94.3 

170.7 

Type of regime 

quasistatic 
dynamic 
dynamic 

deformation. This transition is very important for the creation of the bonds between 
the particles and the initiation of the chemical reactions (Nesterenko, 1992). In Fig. 
5 and in Table 10 are presented data illustrating this transition with the pressure 

increase. 
One of the important results of these calculations is that the internal energy follows 

the dependence of the macrokinetic energy on the shock pressures, and the material 
model (without strain rate sensitivity) in the two-dimensional geometry provides an 
adequate dissipation mechanism to dissipate exactly the amount of energy which is 

required by the stationary conditions. The kinematics of the energy dissipation in the 
two-dimensional computer calculations is connected with the localized material flow 
on the interfaces, which allows an increase in the energy dissipation with the increasing 

amplitude of the shock pressure above the pressure corresponding to complete dens- 
ification. This behaviour is in quantitative and qualitative disagreement with the 
spherically symmetric single pore models without rate dependence. In the latter case, 
the dissipated energy during the complete pore collapse does not depend on the 
pressure because the geometry of deformation is initially fixed and does not depend 
on pressure. In contrast, in the two-dimensional computer calculations, the geometry 
of the deformation is determined not only by the initial pore geometry, but, to a great 
extent, by the pressure amplitude. 

The quasistatic particle deformation [Fig. 5(a)] is characterized by the microkinetic 
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U = 0.22 KM/S, Psr = 0.6 GPa, QUASISTATIC REGIME 

1979 

a 

U = 0.75 KM/S, P,, = 6.9 GPa, DYNAMIC REGIME 

b 

Mbar 

d 

U = 1.10 KM/S, P,, = 13.5 GPa, DYNAMIC REGIME 

e f 
Fig. 5. The pressure induced transition from quasistatic to dynamic deformation and corresponding profiles 
of total kinetic energy (l), internal energy (2) and microkinetic energy (3) for Ni alloy I. Shape of the 
deformed particles : a-P,, = 0.6 GPa, quasistatic regime ; c--P,, = 6.9 GPa, dynamic regime ; e-P,, = 13.5 
GPa, dynamic regime. Profiles of energies: b-P,, = 0.6 GPa, quasistatic regime, d-P,, = 6.9 GPa, 
dynamic regime, f--P,, = 13.5 GPa, dynamic regime. Solid density 8.26 g cme3, particle size 0.74-0.88 pm, 

cp = 0.4. Arrows mark the point of complete densification. 
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energy, which is approximately 334 times less (Table 10) than the energy dissipated 
up to the moment of complete densification for low pressures. This dissipated energy, 
at a pressure that is just enough to get complete densification, can be considered to 
be close to the geometrically necessary energy for quasistatic pore collapse. Therefore 
we can conclude that quasistatic deformation of the particles correlates with the 
microkinetic energy being small in comparison to the geometrically necessary energy 
of the plastic deformation. 

An increase in the particle velocities in the wave [Table 10 and Fig. 5(c-f)] results 
in the increase of the microkinetic energy and the occurrence of the dynamic regime 
of particle deformation, which is characterized by deviations of the particle contact 
geometry from straight lines, and with the experimentally observed peculiarities 
(melts, jets) in the joint triple points of neighboring particles. At large pressures [Fig. 
5(c-f)], the material cannot dissipate all the internal energy during the densification 
stage and it has some additional movement in the compacted state. This additional 
movement is very important for the bonding process, and the initiation of the chemical 
reactions in the compressed state, because it provides favorable conditions for the 
combined pressure and shear deformation that is paramount for the initiation of 
chemical transformations. 

From Fig. 5(b, d and f), it is evident that the microkinetic energy can be considered 
to be, so to speak, a “virtual” parameter. We use the word “virtual” because, in 
general, for the final state after the passage of a steady shock wave, Emkln cannot be 
simply added to the internal energy as its separate part. This is evident because 
the dissipation processes will finally transform the microkinetic energy into thermal 
energy. 

The microkinetic energy exists in some areas on the shock front, and just behind 
the densification front, but not in the final state which is determined by the Hugoniot 
relation. As usual, the profile of the microkinetic energy is relatively symmetric for 
the quasistatic regime, and asymmetric for the dynamic regime. But in both cases, the 
build-up time and the decay time have the same order of magnitude. It means that 
additional motion in the completely densified powder continues on a scale comparable 
with the thickness of the densification front behind it. 

The microkinetic energy is not important for shock relations as a parameter by 
itself, unlike the internal energy. But it is important as an indication of the existence 
of a qualitatively important channel in the energy transformation through visco- 
plastic deformation from the initial macrokinetic energy ahead of the shock into heat 
behind it. This channel of energy dissipation is responsible for the new space scale in 
the compacted powders, namely the width of the shear localization zones on particle 
interfaces, the jet thickness, and finally, the compact quality. A relatively small 
value of this parameter results in identifying the shock wave consolidation with the 
quasistatic one [Fig. 5(a)]. 

The existence of E,,,k,n after the full pore collapse has a fundamental importance 
because it demonstrates a mechanism of energy dissipation that the framework of the 
hollow sphere model does not represent, even qualitatively. In the case of a visco- 
plastic material, the hollow sphere model can dissipate any amount of energy since 
the strain rate approaches infinity as the pore radius approaches zero. 

This result creates a problem for modelling the micromechanical motion after the 
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pore collapse within the framework of phenomenological relations. The process of 
the pore collapse only prepares the material for this final stage, as was emphasized 
by Nesterenko (1992) in the modified Carroll-Holt model, where the process of 
symmetrical collapse is stopped by the central undeformable core. This very important 
part of the process, the material plastic flow in the compressed state after complete 
densification, cannot be modelled by single pore models. 

3.3.3. Dependence of the quasistatic-dynamic transition on particle size. The particle 
size is an important structural parameter which can effect the interface temperature 
and determine the space scale of the shock transition, as shown by Nesterenko (1975, 
1992). That is why it is very interesting to investigate how this parameter is able to 
effect the transition from the quasistatic to the dynamic deformation regime. In Figs 
6 and 7 and in Tables 11, 12 and 13 are presented data for powders with particles that 
are large in comparison to the data of Table 10 and Fig. 5. The powders are identical 
except for the particle morphology as characterized by the particle size or the size 
distribution. 

From Tables 10 to 11, we can see that the two-dimensional computer model predicts 
for IN-71 8 (porosity 0.4) a transition from the quasistatic to the dynamic deformation 
regime in the shock pressure interval Pst = 0.6-6.9 GPa, and a well-developed dynamic 
regime exists at P,, = 14.1 GPa, independent of the particle size. A change of the 
particle size does not result in a change of the deformation regime or the particle 
shape after densification. 

The reason why the particle size does not effect the deformation regime in the 
computer calculations is due to the independence of the plastic work on the pore size 
for a strain rate insensitive model. 

These data are in qualitative agreement with the compacted material structures 
from the experiments by Meyers and Wang (1988) depicted in Fig. 8 for IN-718, and 
corresponding to an initial porosity 0.4 and shock pressure 3 GPa [mainly quasistatic 
regime, Fig. 8(b)], and 15 GPa [dynamic regime, Fig. 8(c)]. 

The independence of the deformation regime on the particle size is also in agreement 
with the observed independence of the strength of the consolidated material in a wide 
range of rapidly solidified stainless steel particle sizes, ranking from less than 40 pm 
to 31&440 pm as demonstrated by Nesterenko, Lazaridi et al. (1989, 1990, 1992). It 
is worthwhile to mention that in some models, the local temperatures are very sensitive 
to the particle size, and criteria based on them have failed to explain the observed 
independence of the compact strength on the initial particle size, as demonstrated by 
Nesterenko (1992, 1995). 

The perfect scaling of the geometry of the total particle deformation, as well as the 
localized areas on their interfaces, was observed in the calculations with the strain 
rate insensitive model. This result is natural since no scale in addition to the particle 
size exists in this model. Thus, this insensitivity of the computer results to the initial 
particle size demonstrates the consistency of the results. This is especially valuable 
because no exact solutions of the problem exist for checking the computer results. 
The introduction of strain rate sensitivity of the powder material will definitely change 
this behaviour. The variation of the particle sizes for strain-rate sensitive materials 
should result in the change of the powder behaviour, including the transition from 
the quasistatic to the dynamic regime of particle deformation (Nesterenko, 1992). 
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Fig. 6. Quasistatic-dynamic transition for “large” particles, Ni alloy I. Shape of the deformed “large” 
particles [compare with and Fig 5(a, c, e)] depending on shock pressure : a--u = 0.22 km s-l ; P,, = 0.6 
GPa, (quasistatic regime, beginning of dynamic one in the separate points) ; b-u = 0.75 km ss’ ; P,, = 6.90 
GPa, dynamic regime ; c-u = 1.10 km s-’ ; P,,, = 14.10 GPa, dynamic regime. Particle size-2.22-2.64 

pm, solid density 8.26 g cm-‘, porosity 0.4. 
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Fig. 7 Influence of initial particle distribution on sizes of Ni-alloy 2 particles on the transition from . . ^__ 
quaslstatlc to dynamic regime ofdetbrmation. a-d: particle size 0.74-0.88 pm; e--h : particle size 0.5-10 
,um. Geometry of particle’s deformation: a, e-u = 0.48 km SC’, P,, = 7.9 GPa, c-u = 0.67 km SC’. 
Ps, = 13.9 GPa, g-u = 0.67 km SC’, P,, = 14.7 GPa. Profiles of total kinetic energy (l), dissipated energy 
(2) and microkinetic energy (3) : b, f-u = 0.48 km SK’ ; d, h-u = 0.67 km SK’. Solid density 8.9 g cmm3, 
porosity 0.19. Arrows mark the point of complete densification and direction of shock wave propagation. 

e U = 0.67 KM/S 
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3.3.4. The influence of initial material strength on the transition from the quasistatic 

to the dynamic regime of particle deformation, The mechanisms of energy trans- 
formation can be investigated via computer calculations by changing the initial 
material strength of the particles, and even setting the strength of the material equal 
to zero (fluid model). Parameters of the shock profile for these cases are presented in 
Fig. 9 and Table 14 for stainless steel particles with different initial strengths. 

There are some very interesting features which are evident from Tables 4 and 14 
and Fig. 9 : 

l The values of pressures PC,, and P,, do not depend on the material strength. 
l The amount of the dissipated energy does not change significantly with the decrease 

of the initial strength by one order of magnitude despite the same change in the 
porosity during shock densification for both cases. 

l The microkinetic energy increases with a decrease of the initial material strength. 
For u = 1.29 km SK’ the microkinetic energy is asymmetric for the material with 
the low initial strength : it has a fast growth with a subsequent slow decay behind 
the shock. 

It is natural that the lower initial strength results in a much more turbulent plastic 
flow of the particles at the same level of dissipated energy. The reason that the 
dissipated energy does not depend significantly on the initial strength is connected 
with the physics of the stationary shock. As was discussed in Section 3.3.1, the shock 
parameters in the calculations are close to the expected ones for the stationary shock 
conditions. In this case, the amount of the internal energy is equal to the macrokinetic 
energy and does not depend on the initial material strength if the particle velocity is 
kept the same. It is interesting that this property for the stationary shock is valid also 
for an assemblage of a relatively small number of particles and for shock distances 
equal only to the length of 5-7 particle diameters. 

The extreme case is the material with zero initial strength (fluid). Data for this case 
are presented in Table 15 and in Fig. 10. 

The density in the zero strength model is the same as in the model where dissipation 
due to the plastic flow was included with the same loading conditions [Figs 5(a) and 
6(a)] for smaller and larger particles. It is evident that despite the absence of plastic 
dissipation in the fluid model during the fluid flow, we have a significant increase in 
the internal energy during shock compression. The amount of the internal energy 
cannot be attributed to the cold energy at a calculated density of 8.28 g cmm3. The 
only mechanism for dissipation in the fluid is the shock reverberations (cycles of 
shock loading and isentropic rarefraction) inside the particles during the pore collapse. 
In this case, the shock viscosity, which is introduced in the calculations, provides the 
energy dissipation. This behaviour is analogous to the dissipation process in the 
Thouvenin model (Thouvenin, 1966), where the plastic deformation of the particles 
is absent and the necessary amount of dissipated energy is provided by the many 
reverberations, as was shown by Hofmann et al. (1968). In the one-dimensional 
geometry, this process takes a long time (as was demonstrated in experiments and 
computer calculations) in comparison with the experiments on powders having the 
same initial density as the laminar Touhvenin model, but with a spherical or cubic 
geometry (Nesterenko, 1992). 
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a 

Fig. 8. Initial particle of Ni alloy 1 and kinematics of particle’s deformation at different shock pressures 
(SEM fractographs of failed sample after tensile tests) : a-initial particle, size 7488 pm, &pressure at 

first shock 3 GPa, c-pressure at first shock 15 GPa. 
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d e 
Fig. 13. Heterogeneity of particle’s interface deformation in dynamic regime (optical micrograph of sample 
of rapidly solidified stainless steel granules after tensile tests) with different particle sizes: a, b, c- 
distribution of deformation between neighboring particles (a-particle size 3 l&440 pm, b, c-particle size 
90-145 mm), note the molten “pockets”, shown by arrows ; d-localized shear (shown by the arrows on 
picture side) on the boundary between adjacent particles (particle size 3 IWO pm) ; e-“uniform” plastic 
deformation of contact zone (particle size 31@440 pm). Pressure at the first shock (responsible for 

densification) is equal o 20 GPa, initial porosity 0.4, solid density 7.77 g cmm3. 



U = 0.70 KM/S, Y, = 0. 0205 Mbar 
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Fig. 9. Influence of initial material strength of steel particles on the transition from quasistatic to dynamic 
regime. ad : Y,, = 0.0205 Mbar ; e-h : 0.00205 Mbar. Geometry of particle’s deformation : a, e-u = 0.70 
km SK’, P,, = 5.7 GPa, c, g-u = 1.29 km SK’, P,, = 17.9 GPa. 

Profiles of total kinetic energy (I), internal energy (2) and microkinetic energy (3) : b, f--u = 0.70 km 
SK’, P,, = 5.7 GPa, d, k--u = 1.29 km s-‘, P,, = 17.9 GPa. Solid density 7.77 g cm-‘, porosity 0.4, particle 
size 3 1 WI40 pm. Arrows mark the point of complete densification and direction of shock wave propagation. 
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Y, = 0, u = 0.22 KM/s, P, = 0.6 GPO, DYNAMIC 
REGIME 

a b 
Fig. 10. The shock parameters in the fluid model : a-geometry of particle deformation; &profiles of 
total kinetic energy (I), internal energy (2) and microkinetic energy (3). Solid density 8.26 g cm-j, porosily 

0.40, piston velocity u = 0.22 km SC’, particle size 2.22-2.64 pm. 

A very unusual result is that in the two-dimensional geometry this process can 
result in the very rapid dissipation of the macrokinetic energy on the scale of the 
particle size even at the low pressures [Fig. IO(b)]. This dissipation does not provide 
the equality of macrokinetic and internal energy on the investigated distances from 
the entrance, as would be the case for a stationary shock, but it is comparable with 
the macrokinetic energy. The mechanism of the shock wave dissipation can therefore 
provide a significant amount of the total energy dissipation in the dynamic regime of 
particle deformation. 

It is worthwhile to emphasize that in the one-dimensional phenomenological single 
pore models, the material behaviour with the proposed equations for plastic flow 
(14)-(18) will not result in the required amount of dissipated energy for high shock 
pressures [see (2)-( lo)]. That is why for single pore models, it is critical to include the 
strain-rate sensitivity to provide the dissipation required by the conservation laws. 
Including the strain-rate sensitivity (viscous dissipation) in the two-dimensional com- 
puter code will only change the energy distribution inside the localized plastic flow 
along the particle interfaces, but not the amount of total energy dissipated. At the 
same time, including the strain-rate effect can result in a dependence on the particle 
size of the transition pressures from the quasistatic to the dynamic regime for materials 
where this type of dissipation is the main one. 

The fluid demonstrates the existence of the jet formation ahead of the shock 
compaction front [see the middle of the compaction front in Fig. 10(a)]. This jetting 
also occurs in materials with normal strength [see Fig. 9(c) for stainless steel]. It can 
increase the local pressures and initiate sites for chemical transformations in porous 
explosives. 

3.3.5. Dependence of’ the quasistatic-dynamic transition on the porosity at equal 
pressures. The quasistaticcdynamic transition, according to its qualitative definition, 
should occur for all porosities as the shock pressure increases. Indeed, for any initial 
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porosity, the increase of the energy supply to some threshold value will result in a 
qualitative change in the powder behaviour, but the character of this change depends 
on the initial porosity. For example, for very small porosities, we can not expect the 
large changes in the particle geometry in comparison to the quasistatic geometry. 
Local melting will be the main hallmark of the dynamic regime in this case. 

The evaluation of the capacity of powders with different initial porosities to accumu- 
late microkinetic energy is important, because a small initial porosity will provide 
better conditions to reach high shock pressures. At the same time, the decrease of the 
initial porosity will decrease the internal energy and probably the microkinetic energy 
as well. 

The computer calculations with an initial porosity cp = 0.18 were made at the same 
pressures as the rp = 0.4 calculations to clarify this point. Figure 11 presents the 
particle deformations, and the total kinetic, microkinetic and internal energy profiles, 
for two particle velocities and the corresponding data are presented in Table 16. This 
data should be compared with the data for similar pressures (6.9 and 13.5 GPa) and 
different initial porosities presented in Table 10 and Fig. 5(c-f). 

From the comparison of the data at similar pressures and different initial porosities 
[Figs 5(c, d) and 11 (a, b), Figs 5(e, f) and I 1 (c, d)] it is evident that the larger 
initial porosities definitely enhance the dynamic behaviour of the powder at the same 
pressures. It is more difficult to judge the difference in the critical pressures for these 
two cases because the local hallmarks of the dynamic regime (e.g. localized melting) 
can occur at lower pressures for the lower initial porosities. But we can conclude that 
the intensive plastic flow of particles in the consolidated state is more pronounced for 
the larger initial porosities. The comparison of the microkinetic energies in the cases 
of these two porosities 0.4 and 0.18 (see Tables 16 and 10 for corresponding pressures) 
demonstrates that the microkinetic energy increase has close to a quadratic depen- 
dence on the initial porosity. This increase of the microkinetic energy is qualitatively 
different from the linear dependence of the internal energy on the initial porosity at 
the same pressure. It is worthwhile to mention that this strong dependence of the 
microkinetic energy on the initial porosity cannot be predicted from any phenom- 
enological model. 

Comparison of the shapes of the deformed particles in the corresponding Figs 5 and 
11 and the differences in the microkinetic energies shows the larger initial porosities are 
preferable for the initiation of chemical reactions and particle bonding at the same 
pressures. 

3.3.6. Dependence of transition on particle density. The solid density of the powder 
particles is a very important parameter which determines the pressure for given initial 
porosities and internal energy (12) and (37). Therefore it is important to understand 
the role of this parameter on the quasistatic-dynamic transition in the computer 
calculations. To clarify its role, the calculations were performed for an artificial 
material with the same properties as IN-7 18, except for the solid density of particles. 
The results are presented in Fig. 12 and in Table 17. They should be compared with 
the results obtained for particles with the same properties, except for a lower density, 
in Fig. 5 and Table 10. 

It is easy to see that the internal energy as well as the microkinetic energy are larger 



D. .i. BENSON et al. 

U = 0.48 KM/S, P,, = 7.8 GPa, QUASISTATIC REGIME 

0. 00 2.10-d ’ 6.W4 cm 

a b 

U = 0.67 KM/S, PST = 14.0 GPs, DYNAMIC REGIME 

Mbar 

0.020- 

C d 

Fig. 1 I. The dependence of particle’s deformation on shock pressures for Ni alloy 1 at initial porosity 0.18. 
Porosity 0.18, shock pressures 7.8 and 14.0 GPa, [compare with Fig. 5(c, d and e, f) for porosity 0.40 and 
close shock pressures 6.9 and 13.5 GPa]. Geometry of particle’s deformation : a--u = 0.48 km SC’, P,, = 7.X 
GPa, (quasistatic regime, beginning of dynamic one in the separate points), C-U = 0.67 km s- ‘, P,, = 14 
GPa, (dynamic regime). Profiles of total kinetic energy (I), internal energy (2) and microkinetic energy 
(3) : &u = 0.48 km SC’, P,, = 7.8 GPa, d-u = 0.67 km SC’, P,, = 14.0 GPa. Solid density 8.26 g cm-‘, 
particle size 0.740.88 pm. Arrows mark the points of complete densification and direction of shock wave 

propagation. 

for the heavier particles. But the regimes of their deformations are practically identical 
at similar pressures, including the details of the particles deformations, in the qua- 
sistatic and in the dynamic regimes (compare the same particles in Figs 5 and 12 for 
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Fig. 12. Influence of particle density on the quasistaticdynamic transition (compare with Fig. 5 for lower 
solid density 8.26 g cmm3, but the same initial porosity 0.4 and close pressures). Geometry of particle’s 
deformation a-u = 0.14 km SK’, P,, = 0.6 GPa, C-U = 0.49 km s-I, P,, = 6.9 GPa, e-u = 0.72 km SK’, 
P,, = 14.9 GPa. Profiles of total kinetic energy (I), internal energy (2) and microkinetic energy (3) : & 
u = 0.14 km s-‘, d-u = 0.49 km s-‘, f--u = 0.72 km SK’. Arrows mark the moments of complete 

densification. Solid density 19.35 g cme3, initial porosity 0.4, particle size 0.740.88 pm. 

the similar pressures). It means that the initial density of the particles is not an 
important parameter for the quasistaticdynamic transition despite the dependence 
of the shock parameters on the solid density. This is in perfect agreement with the 
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transition criteria proposed by Nesterenko (1988, 1992, 1995) based on the ratio of 
the shock internal energy and the geometrically necessary energy for the complete 
densification in the static regime. We emphasize, however, that if viscous deformation 
is the main mechanism of the energy dissipation process, then the solid density will 
be an important parameter for the transition pressure (Nesterenko, 1992). 

3.3.7. Heterogeneity of the contact deformation in the dynamic regime. A quali- 
tatively important experimental feature of the shock wave deformation of granular 
materials is the heterogeneity of the contact deformation in the dynamic regime (Fig. 
13). Even for adjacent particles, the deformation does not necessarily have the same 
character. In some locations, the intensive localized deformation on the contact 
surfaces initiates without involving adjacent particle contacts. This feature was absent 
in the quasistatic regime, where all contacts were deformed in the same manner. This 
results in the concentration of intensive shear on individual, separate interfaces and 
the absence of this behaviour on neighboring particles [Fig. 13(a)], and it is especially 
visible for large particles. The intensive shear deformation [Fig. 13(b)], partially under 
high shock pressure, results in good bonding without significant melting. Dynamic 
pressure by itself is not enough to get good bonding without shear localization on the 
particle interfaces [Fig. 13(c) and the locations shown in Fig. 13(a, d, e) by arrows]. 

This behaviour apparently is out of the range of the single pore models, but it is 
adequately described by the two-dimensional computer model (Fig. 14). As in the 
experiments, the adjacent particle interfaces in the computer calculations can have 
qualitatively different localized plastic deformations. This qualitatively important 
feature of the two-dimensional model provides the natural introduction of the new 
deformation scale, namely, the size of the localized deformation zone on the particle 
interface. The central part of the particle undergoes much less plastic deformation, 
and the size of this region agrees with the modified model (Nesterenko, 1992), decreas- 
ing with an increase of the initial porosity. 

3.3.8. Spin characteristics in the shockedpowders. The two-dimensional computer 
modelling permits the calculation of qualitatively new parameters in the shocked 
powders (like microkinetic energy) which are very important for the global material 
behavior, e.g. the bonding between particles or the initiation of the chemical reactions, 
but which are, in principle, outside the scope of any straightforward experimental 
method to be measured. One of these parameters is the spin, which is represented by 
(36), and it describes the rotation in the material of the particles. The spin profiles 
are presented for the quasistatic and dynamic regimes in Fig. 15. It is easy to see the 
correlation between the microkinetic energy and the spin for these two qualitatively 
different regimes. The vanishing of the microkinetic energy is in good agreement 
with the vanishing of the spin immediately after the complete densification for the 
quasistatic regime [Fig. 15(a)], which exhibits no additional motion in the compacted 
material. A completely different behaviour of the spin and microkinetic energy is 
evident in Fig. 15(b, c) for the dynamic regime. In the latter case, the magnitude of 
the spin does not change immediately after full compaction [compare Fig. 15(a) and 
15(b, c)]. The existence of the spin in the fully compacted material ensures the mutual 
plastic flow of the particle contacts, which is favorable for good bonding and the 
initiation of chemical reactions. 
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Fig. 14. Distribution of deformation for adjacent particles in 2-D computer calculations in dynamic regime 
for different porosities : a-porosity 0.40, u = 1.29 km s- ‘, PSt = 17.9 GPa, stainless steel particles, particle 
size 31WO pm; &porosity 0.19; u = 0.67 km SK’, P,, = 13.7 GPa, Ni alloy 2, particle size 0.74-0.88 

pm. Arrows mark the direction of shock wave propagation. 
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Fig. 15. Spin behavior at quasistatic and dynamic regimes : a--u = 0.22 km s-‘, Ps, = 0.6 GPa, Ni alloy 1, 
quasistatic; b-u = 1.10 km SK’, P,, = 13.5 GPa, Ni alloy 1, dynamic; C-U = 0.22 km SC’, P,, = 0.6 GPa, 
Auid model, dynamic. Solid density 8.26 g cmm-3, porosity 0.4, particle size 2.22-2.63 pm. Arrows mark the 

point of complete densification. 

3.3.9. Shock wave thickness. This parameter is especially interesting because, for 
relatively strong shocks, the experimentally measured front width is close to the 
particle size (Nesterenko, 1975, 1992). The continuum single pore models provide this 
result for strong shocks (Carroll et al., 1986), but the validity of the continuum 
approach on a space scale close to the particle diameter is not evident. The 0.1-0.9 
shock front thicknesses, A, for different particle diameters d, porosities and pressures 
are presented in Table 18. The particle diameters of small granules for porosities 0.19 
and 0.40 were the same, and the diameters of large granules were 3 times larger. 

The main features of shock front dependence on the porosity and the initial particle 
sizes can be summarized as follows : 

1. The shock front width, A, is close to the particle diameter and decreases with 
increases in pressure ; 



Impulsive deformation of granular material 1995 

Table 18. Shock wave thickness for different pressures, porosites, andparticle sizes 

Porosity 0.19, Porosity 0.4 Porosity 0.4, 
small particles small particles large particles 

p,, @Pa) AId P, @Pa) A/d J’,, @Pa) A/d 

2.4 1.5 0.6 2 0.6 1.5 
0.6 (long) 2.5 

8 1.5 6.9 1.5 6.9 1 
13.9 0.8 14.1 1.3 14.1 1 

2. A depends on the initial particle size ; 
3. In the investigated range of pressures and porosities, A did not reveal a large 

dependence on the initial porosity. 

A very important result is that in the experiments, the relation of the shock front 
thickness to the initial particle size is close to the values in Table 18. This demonstrates 
that the kinetics of densification, and not only the final stage, as described by the two- 
dimensional model, is not only qualitatively correct but also quantitatively correct. 
This cannot be correctly done in any continuum model on the size scale of the particle 
diameter. The final stage for the stationary shock wave is insensitive to the type of 
dissipation process, but the shock front thickness can be dependent on the details of 
the material behaviour and particle morphology. As was observed by Nesterenko and 
Lazaridi (1990) the dynamic regime of the particle deformation correlates with a 
shock front thickness close to the particle size. 

The spatial shock width for a mixture of particles with different particle sizes is 
comparable to the largest particle size, and this is in good agreement with the results 
of experiments (Nesterenko, 1975, 1992). 

4. CONCLUSIONS 

The two-dimensional computer modelling of the dynamic deformation of porous 
granular material is in qualitative agreement with the hypothesis of stationary shock 
propagation in powder materials, according to the Rankine-Hugoniot relations 
between the macrokinetic energy and the internal energy, for a large range of pressures, 
particle velocity, and density. The qualitatively important result is that in the indus- 
trially important range of pressures which we investigated (< 14 GPa), the increase 
of the dissipated energy with the shock pressure can be tracked by the rate independent 
model as a result of large two-dimensional particle deformation. Even more important 
is that the model is able to take into account the new size scale defined by the interface 
boundary layers, where the majority of the energy is dissipated. The amount of 
internal energy, which is mainly dissipated up to the moment of complete densification, 
is a linear function of pressure, which determines the geometry of the plastic flow in 
the densified powder. This property is qualitatively different from the single pore 
model predictions, where the initial, purely geometrical constraints restrict the amount 
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of the dissipated energy, which is independent of the shock pressure for pressures 
greater than the densification pressure for a rate independent elastic-plastic model. 

The transition from the quasistatic regime of particle deformation to the dynamic 
one correlates with a critical value of a qualitatively new virtual parameter, the 
microkinetic energy, which exists on the densification front at relatively large pres- 
sures. The ratio of the microkinetic energy to the geometrically necessary energy is 
close to 3.5 for an initial porosity 0.4. 

The transition to the dynamic regime can be obtained by a pressure increase, and 
depends on the initial porosity as well as the initial strength of the material. For the 
investigated materials, the dependence of the particle deformation on the initial 
particle size was not observed, and the solid density of the particles is not an important 
parameter for this transition. 

The wave reverberations can provide dissipation on the scale of the particle size 
(shock front width) in a two-dimensional model, in addition to the dissipation from 
the plastic flow during pore collapse. 

The well-developed dynamic regime of particle deformation also coincides with the 
vortex motion of the material in the compacted state. 

The results of the two-dimensional computer calculations for the shock front width 
are in good agreement with the experimental data. 

The comparisons of the two-dimensional computer results with the experimentally 
observed peculiarities of the powder behaviour in the process of shock loading justify 
the further development of this approach to include the chemical reactions into 
combined mechanochemical consideration. 
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